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STEREOCONTROLLED FUNCTIONALIZATION OF CYCLOHEPTADIENE; 

AN APPROACH TO TYLOSIN AND CARBOMYCIN B FROM A COMMON INTERMEDIATE 
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Abstract. Bromolactonization of the cycloheptadienylacetic acid 1 proceeds with good regio- 
and stereocontrol and provides 4 which serves as a common intermediate for right hand sections 
of two macrolide antibiotics, tylosin and carbomycin B. 

While the six-membered ring has played a major role as a framework for stereocontrolled 

attachment of substituents in the synthesis of both cyclic and acyclic molecules, the homo- 

logous cycloheptane ring has remained comparatively untouched,l even though the presence of the 

extra carbon atom might lead to opportunities for introduction of additional stereocenters. We 

have been exploring methods for functionalizing cycloheptene and cycloheptadiene derivatives2 

using a transition metal moiety as a means of introducing conformational rigidity and achieving 

stereocontrolled C-C bond formation. Using organoiron complexes, we have been able to convert 

cycloheptadiene to the racemic carboxylic acid 1. However, for this to be of use to the 

synthetic organic chemist, it is essential to determine the outcome of reactions designed to 

functionalize the cycloheptadiene system, and for this purpose we have focussed on the right 

hand sections of the 16-membered ring macrolide antibiotics tylosin (2) and carbomycin (3) as 

synthetic targets.3 In this Letter we report straightforward transformations of 1 and derived 

cycloheptene derivatives, illustrating the potential synthetic utility of this traditionally 

awkward ring size. 
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Bromolactonization of 1 (NBS, CN2C12, reflux 1.5 h) proceeded cleanly by 

dition to give the sensitive lactone 4 in 80% yield.4 The stereochemical course 

e- 1,4- ad- 

of this reac- 

tion is identical to the previously described phenylselenolactonization,2a and the bromo- 

lactone has all the features of a common intermediate representing C(3)-C(9) sections of 

tylosin and carbomycin B, as well as many related macrolides, provided it can be further 

manipulated. 
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Reagents (yield): (a) Me2CuLi, Et20, OOC, lh (40%). (b) LiAlH4, Et20, OOC, lh (88%). (c) 

CH30CH2C1, 
temperature, 

(i;:;;;:;, CN2Cl2, reflux, $p(90;ic l~:8;385%M2C::j p:;~~;,(~~~)Me28, room 
. (e) CH2-CMMgBr, , 

(g) Pyridinium chlorochromat;?, CH2C12, ’ 
. I acetone, 

room temperature 48h. room temperature, 2h (~a 60% 

overall from 9). 
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Conjugate anti displacement5 of bromide occurred on treatment of 4 with Me2CuLi, to give 

intermediate 5 which was converted to the protected diol 7 using standard techniques (Scheme 

1).4 Ozonolysis of 7 afforded the dialdehyde 8 which possesses four of the stereocenters of 

tylosin. Treatment of 8 with vinylmagnesium bromide gave 9 as a mixture of four diastereomers, 

in which the major and one other component were tentatively assigned as having the required 

relative stereochemistry at C(3).6 Further confirmation of this will form the basis of future 

work. Treatment of the mixture with a catalytic amount of p-toluenesulfonic acid gave the 

dioxolane 106 which was readily oxidized to the enone derivative 11, obtained as a single 

diastereomer now representing a C(l)-C(11) subunit of tylosin. 
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SCHEME 2 

Reagents (yield): (a) PhSeNa (generated from NaBH4 and PhSeSePh), CH2C12, -20°C, lh (81%). 

(b) H202, THF, -20°C, 2h; then Et3N, 23oC, 10 min (72%). (c) TBDMSOTf, lh (92%). LiAlH4, 

Et20, OOC, lh. (e) CH30CH2C1, (i-Pr)2NEt, CH2C12, reflux, 8h (89%). (f) Bu4NF, THF, 25OC, lh 

(90%). (g) NaH, MeI, THF, reflux, lh (82%). (h) 03, CH2C12, -78OC; then Me2S, room tempera- 

ture, 2h (64%). 

Treatment of the bromolactone 4 with PhSeNa led to clean SN2 displacement of bromide, 

affording the selenolactone 12 (Scheme 2). Oxidation of 12 proceeded with concomitant [2,31- 

sigmatropic rearrangement of the initially formed allylic selenoxide to give the hydroxy 

lactone 13.4 It is interesting to note that both 12 and the epimeric selenolactone2a (with 

PhSe e to the lactone) undergo clean oxidative conversion to allylic alcohols. Although 13 

could be converted directly (CH31, NaH, THF) to the methyl ether 14 required as a carbomycin B 

intermediate, the yield of this transformation was poor. Accordingly, a less direct route was 

chosen, via the silyl ether 15, which was converted to the desired trio1 derivative 16. 

Finally, ozomolysis of 16 afforded the dialdehyde 17, representing a C(3) - C(9) section of 

carbomycin B which can be further manipulated using the methodology employed for conversion of 
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8 to 11. The use of organoiron methodology, coupled with manipulation of the product dienes, 

thus provides a potentially flexible approach to these macrolides. 
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istry of 5 is consistent with the large diaxial coupling of 2-H and 3-H (J - 10.7 Hz). 
Compounds prepared by us, having a-stereochemistry at C(3) show J2,3 - 1-2 Hz (ref 2a). 

Similarly, 13 shows J2,3 - 9.8 Hz. 

This stereochemical result is expected from Cram addition, and in practice an inseparable, 
approximately 5:2:2:1 mixture of diastereomers is obtained. The dioxolane 10 is obtained 

as a mixture of two diastereomers, converted to a single enone 11 on oxidation, indicating 

that one C(3) stercoisomer does not cyclize. It may be noted that chelation effects from a 

fl-alkoxy substituent during addition of vinyl Grignard reagents are known to be rather 

weak, see: W. C. Still and J. H. McDonald, Tetrahedron Lett., 1980, 21, 1035. 
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